у 1.	ВЕРЖД	AIO
Сен	геральні	ый директор
3A(О «ЮМ	ИРС»
		A.B. Клюев
۲	"	2015 г.

ИЗВЕЩАТЕЛЬ ОХРАННЫЙ ЛИНЕЙНЫЙ РАДИОВОЛНОВЫЙ «ТАРБАТ-200__-0_»

Руководство по эксплуатации
Лист утверждения
ЮСДП.425142.031 РЭ-ЛУ

Разработ	ал
	О.П. Симакова
«» _	20 г.
Начальн	ик ГССП
	А.С. Святов
«»_	20 г.
Нормоко	онтролер
	Т.Н. Кудряшова
« »	20 г.

Закрытое акционерное общество «Фирма «ЮМИРС»

ИЗВЕЩАТЕЛЬ ОХРАННЫЙ ЛИНЕЙНЫЙ РАДИОВОЛНОВЫЙ «ТАРБАТ-200__-0_» Руководство по эксплуатации ЮСДП.425142.031 РЭ

Содержание

1 Описание и работа	4
1.1 Назначение изделия	4
1.2 Технические характеристики	7
1.3 Состав извещателя	8
1.4 Устройство и работа	9
1.4.1 Принцип действия извещателя	9
1.4.2 Конструкция извещателя	11
1.5 Маркировка	14
1.6 Упаковка	15
2 Использование по назначению	15
2.1 Подготовка изделия к использованию	15
2.1.1 Меры безопасности при подготовке изделия	15
2.1.2 Требования к месту монтажа извещателя	15
2.1.3 Монтаж извещателя	17
2.1.4 Настройка извещателя	22
2.1.5 Требования к организации сети RS-485	25
2.2 Использование изделия	28
3 Техническое обслуживание	30
4 Транспортирование и хранение	31
Приложение А Инструкция пользователя ПО	32
Приложение Б Инструкция по обновлению микропрограммы извещателя	43

Настоящее руководство по эксплуатации ЮСДП.425142.031 РЭ содержит сведения о назначении, конструкции, принципе действия, технических характеристиках, составе извещателей охранных линейных радиоволновых «ТАРБАТ-200-01», «ТАРБАТ-200A-01», «ТАРБАТ-200-02», «ТАРБАТ-200A-02» (далее по тексту — извещатель), а также указания по размещению и эксплуатации.

ЗАО «ЮМИРС» постоянно ведет работу по усовершенствованию конструкции, программы работы извещателя и оставляет за собой право не уведомлять потребителя о внесенных изменениях.

Извещатель соответствует требованиям технического регламента Таможенного союза «Электромагнитная совместимость технических средств» (ТР ТС 020/2011).

В настоящем руководстве приняты следующие сокращения:

БП – блок питания;

ВСКР - вскрытие;

ДК – дистанционный контроль;

3О – зона обнаружения;

КМЧ - комплект монтажных частей;

КР - коробка распределительная;

ЛЭП – линия электропередач;

СВЧ - сверхвысокие частоты;

ПК – персональный компьютер;

ПН – прибор настройки;

ПО – программное обеспечение;

ПРД – блок передающий;

ПРМ – блок приемный;

ШС – шлейф сигнализации.

1 Описание и работа

1.1 Назначение изделия

- 1.1.1 Извещатель предназначен для использования в качестве средства охранной сигнализации, обеспечивает обнаружение человека, пересекающего 3О, и характеризуется малой шириной требуемой зоны отчуждения.
 - 1.1.2 Извещатель имеет рабочую дальность действия от 5 до 200 м.
- 1.1.3 Извещатель формирует выдачу извещений размыканием выходных контактов исполнительного реле, а также передачу сообщения по интерфейсу RS-485 на ПК при:
 - пересечении человеком 3О в полный рост или согнувшись;
- подаче импульса напряжением (5-30) В длительностью более 0,5 с на вход ДК блока передающего.
- 1.1.4 Извещатель допускает функционирование на неподготовленных участках (нескошенная трава или неровности поверхности высотой до 0,5 м) в условиях, оговоренных в п. 2.1.2.1.
- 1.1.5 Извещатель «ТАРБАТ-200-01», «ТАРБАТ-200-02» соответствует виду климатического исполнения У1 по ГОСТ 15150-69, при температуре от 233 до 338 К (от минус 40 до плюс 65°С).

Извещатель «ТАРБАТ-200А-01», «ТАРБАТ-200А-02» соответствует виду климатического исполнения ХЛ1 по ГОСТ 15150-69, при температуре от 213 до 328 К (от минус 60 до плюс 55° C).

- 1.1.6 Извещатель формирует извещение о неисправности размыканием выходной цепи ШС, а также по интерфейсу RS-485 до устранения этой неисправности, но не менее 30 с, при:
 - неисправности блока извещателя;
 - снижении питания ниже (8,5±0,5) В;
- маскировании блока ПРМ/ПРД радиоотражающими или радиопоглощающими материалами;

- при воздействии на антенну блока ПРМ электромагнитного поля, создаваемого маскирующим передатчиком (засветка).
- 1.1.7 Извещатель выдает извещение о несанкционированном доступе в виде размыкания выходной цепи шлейфа вскрытия «ВСКР» при открытой крышке КР
- 1.1.8 Извещатель обеспечивает непрерывную круглосуточную работу, сохраняет работоспособность и не выдает извещение о тревоге при:
 - воздействии осадков в виде дождя и снега интенсивностью до 40 мм/час;
 - воздействии солнечной радиации;
 - воздействии ветра со скоростью до 30 м/с;
 - высоте неровностей на участке до 0,5 м;
 - высоте травяного покрова до 0,5 м;
- высоте снежного покрова без дополнительных регулировок до 0,5 м
 (при высоте снежного покрова более 0,5 м высота установки блоков извещателя от поверхности земли должна быть увеличена).
- 1.1.9 Извещатель работоспособен и не выдает ложной тревоги при раздельном воздействии следующих источников помех:
- импульсных по цепям питания и шлейфа сигнализации по методу УК 1
 с характеристиками для второй степени жесткости, по методу УК 2 второй степени жесткости по ГОСТ Р 50009-2000, и по пп.12, 13 ГОСТ Р 51699-2000;
- кондуктивных, наведенных радиочастотными электромагнитными полями по методу УК 6 с характеристиками для второй степени жесткости по ГОСТ Р 50009-2000 и по п.11 ГОСТ Р 51699-2000;
- радиочастотных электромагнитных полей по методу УИ 1 с характеристиками для второй степени жесткости по ГОСТ Р 50009-2000 и по п.10 ГОСТ Р 51699-2000;
- движении человека на расстоянии от осевой линии 3О при максимальной длине зоны обнаружения, не менее 1,5 м;
- движении одиночного автотранспорта на расстоянии от осевой линии
 30 при максимальной длине зоны обнаружения, не менее 2,0 м;

- движении в зоне обнаружения птиц и мелких животных с линейными размерами, не более 0,3 м;
- воздействии на ПРМ излучения ПРД соседнего участка, как при последовательной, так и при параллельной установке извещателей.

Примечание – Здесь и далее: ось 3О – прямая линия, соединяющая центры ПРД и ПРМ.

- 1.1.10 Извещатель имеет возможность выбора параметров рабочего сигнала, а именно, частотного канала, с целью снижения взаимного влияния соседних извещателей. Допускается параллельная установка двух извещателей.
- 1.1.11 Извещатель обеспечивает регулирование и отображение всех параметров и сигналов при помощи программы настройки, работающей на ПК или ПН.
 - 1.1.12 Извещатель выполнен в пылебрызгозащищенном корпусе с IP54.
- 1.1.13 Извещатель защищен от переполюсовки питающих напряжений в результате ошибочных действий персонала и от импульсов напряжением до 1000 В длительностью до 1 мс, наводимых в соединительных линиях во время грозы.
- 1.1.14 Электропитание извещателя осуществляется от источника постоянного тока с номинальным напряжением от 9 до 36 В при амплитуде пульсаций не более 10%.

1.2 Технические характеристики

1.2.1 Технические характеристики извещателя приведены в таблице 1.1.

Таблица 1.1 – Технические характеристики извещателя

Параметр	Значение
Длина 3О, м	5-200
Запас по уровню принимаемого сигнала при максимальной длине 3О, не менее, дБ	6
Ширина 3O на расстоянии равноудаленном от блоков при максимальной дальности действия, не более, м	2,0
Высота 3О на расстоянии равноудаленном от блоков при максимальной дальности действия, не менее, м	2,0
Длина зоны неуверенного обнаружения на расстоянии от блоков ПРД и ПРМ, не более, м	2,0
Диапазон обнаруживаемых скоростей, м/с	от 0,1 до 10,0
Диапазон рабочих напряжений питания, В	от 9,0 до 36
Потребляемый ток извещателя «ТАРБАТ-200-01», «ТАРБАТ-200-02»	7-71
при рабочем напряжении питания 24 В, мА, не более:	90
a) ПРД б) ПРМ	80 100
Потребляемый ток извещателя «ТАРБАТ-200А-01»,	100
«ТАРБАТ-200А-02» при температуре от минус (35±5) до плюс 55 °C и	
рабочем напряжении питания 24 В, мА, не более:	80
б) ПРМ	100
Потребляемый ток извещателя «ТАРБАТ-200А-01»,	100
«ТАРБАТ-200А-02» при температуре ниже минус (35±5) °С и рабочем	
напряжении питания 24 В, мА, не более:	
а) ПРД	290
б) ПРМ	320
Время готовности после включения питания, с, не более	30
Время восстановления дежурного режима после окончания извещения о тревоге, с, не более	10
Параметры сигнала, коммутируемого выходными контактами цепей «ШС» и «ВСКР»:	
- ток, постоянный или переменный, мА, не более;	100
- амплитудное напряжение, В, не более	72
Параметры сигнала ДК:	
- входное сопротивление цепи, кОм, не более;	5
- напряжение импульса, В;	10-30
- длительность импульса, с, не менее	0,5
Длительность извещения, с, не менее	3
Рабочая частота, МГц	24150±100
Степень защиты оболочки	IP54
Габаритные размеры ПРМ (ПРД) с кронштейном, мм, не более:	240x200x100
Масса извещателя в упаковке, кг, не более	3
Средний срок службы извещателя, лет, не менее	8
Вероятность обнаружения, не менее	0,99
Среднее время наработки на отказ, ч, не менее	60000

Продолжение таблицы 1.1

Параметр	Значение
Вероятность возникновения отказа, приводящего к ложной тревоге, за	
1000 ч, не более	0,01

1.3 Состав извещателя

1.3.1 Состав извещателя приведен в таблице 1.2.

Таблица 1.2 – Состав извещателя

		исі		и. на ние, і	шт
)1	-01)2	-02
Обозначение	Обозначение Наименование и			TAP5AT-200-02	TAPBAT-200A-02
документа	условное обозначение	20	200	-2(20(
		TAPEAT-200-01	\T.	AT	\T.
		PE)P/	PB)P/
		TA	TAPBAT-200A-01	TA	
ЮСДП.464214.028	Блок передающий (ПРД)	1		1	
ЮСДП.464214.034	Блок передающий (ПРД)		1		1
ЮСДП.464332.030	Блок приемный (ПРМ)	1		1	
ЮСДП.464332.037	Блок приемный (ПРМ)		1		1
ЮСДП.425911.025	Комплект монтажных частей (КМЧ) в	1	1	1	1
	составе:				
ЮСДП.425911.040	Комплект кронштейна — 2 шт.				
ГОСТ 1144-80	Шуруп 3-4х40 — 8 шт.				
FO CT 20101 00	Дюбель 6х40 полиамидный — 8 шт.				
ГОСТ 28191-89	Хомут 1Л 70-90 7Н — 4 шт.				
100000 400244 024	Коробка распределительная в составе:	2	2	2	2
ЮСДП.468344.024 ГОСТ 1144-80	Коробка распределительная (КР) — 1 шт.				
10011144-80	Шуруп 3-4x60 — 2 шт. Дюбель 6x40 полиамидный — 2 шт.				
ГОСТ 28191-89	Дюбель 6х40 полиамидный — 2 шт. Хомут 1Л 70-90 7Н — 2 шт				
1001 28191-89	Преобразователь интерфейса USB/RS-485	1*)	1*)	1*)	1*)
	IFD 6500 Delta electronics	1")	1")	1")	1")
	Программное обеспечение (ПО) на диске	1	1	1	1
	Стойка 75 L 2500	2*)	2*)	2*)	2*)
ЮСДП.425911.037	KMY-1V	2*)	2*)	2*)	2*)
ЮСДП.305133.003	Козырек защитный		2*)	2*)	2*)
ЮСДП.425915.078	Упаковка		1	1	1
ЮСДП.425142.031 ПС	Паспорт	1	1	1	1
, ,	1	1			
ЮСДП.425142.031 РЭ Руководство по эксплуатации			1	1	1

Примечание — *) Поставляется по отдельному заказу. Заказ осуществляется в соответствии с требуемым исполнением.

- 1.4 Устройство и работа
- 1.4.1 Принцип действия извещателя.
- 1.4.1.1 ПРД и ПРМ размещаются на противоположных концах охраняемого участка. ПРД излучает электромагнитные волны в направлении ПРМ. ПРМ принимает эти волны, преобразует в электрический сигнал и анализирует этот сигнал.
- 1.4.1.2 Человек, пересекая 3О, вызывает модуляцию сигнала на входе ПРМ. Глубина модуляции и форма сигнала зависят от роста и массы человека, места пересечения участка, рельефа участка, скорости движения.

Если человек движется близко от антенн ближе (15-20) м, то сигнал представляет собой одиночный отрицательный выброс большой глубины модуляции.

Если человек передвигается на расстоянии далее (15-20) м от антенн, то сигнал представляет собой несколько последовательно чередующихся положительных и отрицательных выбросов малой глубины модуляции, при этом интервал времени между соседними положительными и отрицательными выбросами и их длительность зависят от скорости движения человека. Анализ временных и амплитудных характеристик сигнала заложен в алгоритме обработки.

- 1.4.1.3 Оценка уровня модуляции входного сигнала производится в соответствии с установленными параметрами обнаружения.
- 1.4.1.4 Извещатель имеет два режима регулирования порогов: «автоматический» В И «ручной». автоматическом режиме процессор обеспечивает оптимальные характеристики ДЛЯ обнаружения человека, пересекающего 3О по поверхности земли. В ручном режиме отрицательный устанавливается оператором. Необходимость ручной регулировки возникает, как правило, при отличии условий эксплуатации, определенных настоящим руководством.

Следует отметить, что в «автоматическом» режиме порог определяется в дБ по отношению к среднему уровню принимаемого радиосигнала. За счет этого датчик адаптируется к медленным изменениям уровня, которые определяются погодными условиями.

- 1.4.1.5 Важной особенностью алгоритма обнаружения извещателя является возможность установки верхней обнаруживаемой скорости преодоления рубежа нарушителем. Выбор данного параметра осуществляется пользователем в зависимости от условий применения извещателя.
- 1.4.1.6 В извещателе можно установить три значения максимальной скорости: 0,5 м/с; 2 м/с; 10 м/с. Рекомендации по выбору данного параметра сведены в таблицу 1.3.

Таблица 1.3 – Рекомендации по выбору параметра

Условия применения извещателя	Рекомендуемое значение верхней обнаруживаемой
_	скорости
Открытое пространство без каких-либо	
инженерных сооружений,	«высокая» (~10 м/с)
препятствующих движению нарушителя	
Слабо защищенный рубеж (небольшой	
забор, пространство около зданий, стен,	«средняя» (~2 м/с)
кустарниковое заграждение и т.п.)	
Хорошо защищенный рубеж (верх или	
полотно высокого забора, где скорость	«низкая» (~0,5 м/с)
движения нарушителя значительно	«пизкая» (~0,3 м/с)
ограничена)	

Выбор правильного значения позволит существенно снизить вероятность ложных срабатываний извещателя, вызванных пролетом птиц и другими мешающими факторами.

Извещатель имеет 200 независимых частотных каналов (от 50 до 250). Разница частот двух соседних каналов составляет 1 МГц. Полный диапазон всех каналов располагается от 24050 до 24250 МГц. Излучаемая частота 50-го канала – 24050 МГц, 60-го канала – 24060 МГц и 250-го канала – 24250 МГц. Выбор частотного канала осуществляется с помощью компьютерной программы настройки. Для нормальной работы извещателя необходимо, чтобы в ПРД и

ПРМ одного изввещателя были установлены одинаковые частотные каналы. Для исключения взаимного влияния друг на друга извещателей соседних участков им должны быть присвоены различные частотные каналы. Рекомендуется устанавливать как можно большую разницу номеров частотных каналов.

Следует учесть, что из этого общего правила имеется исключение. А именно, также имеется возможность организовать нормальную работу извещателя в случае, если номер частотного канала ПРД больше на 6 номеров частотного канала ПРМ. Т.е. если в ПРД будет использоваться 10 канал, то его сигналы будут обнаруживаться ПРМ с 10, а также и с 4 каналом. Данное обстоятельство необходимо иметь в виду при организации смежных участков.

Конструктивной особенностью, обеспечивающей оригинальные функциональные свойства извещателя, является очень узкая диаграмма направленности антенн. Эта особенность обеспечивает повышенную устойчивость к движущимся предметам в непосредственной близости от оси 3О. Относительно высокая рабочая частота также определяет малую ширину 3О.

Примерный вид формы 3О в соответствии с рисунком 1.1.

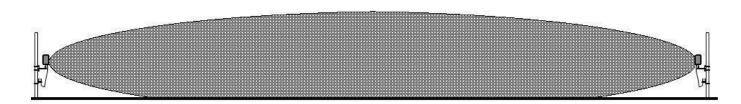


Рисунок 1.1 – Примерный вид формы 3О

- 1.4.2 Конструкция извещателя
- 1.4.2.1 Конструктивно извещатель выполнен в виде двух отдельных идентичных по размерам и внешнему виду блоков.

Блоки извещателя имеют пластиковый корпус, кабель извещателя защищен металлорукавом и монтируется к КР при помощи установленного на нем фитинга.

1.4.2.2 Установка блоков извещателя на объекте производится с помощью кронштейнов универсальных, хомутов и шурупов, входящих в состав КМЧ.

Внешний вид ПРМ (ПРД) извещателя и КР установленных на опоре, в соответствии с рисунком 1.2.



Рисунок 1.2 – Внешний вид блока ПРМ/ПРД и КР на опоре

Внешний вид ПРМ (ПРД) извещателя и КР установленных на плоской поверхности (стене), в соответствии с рисунком 1.3.

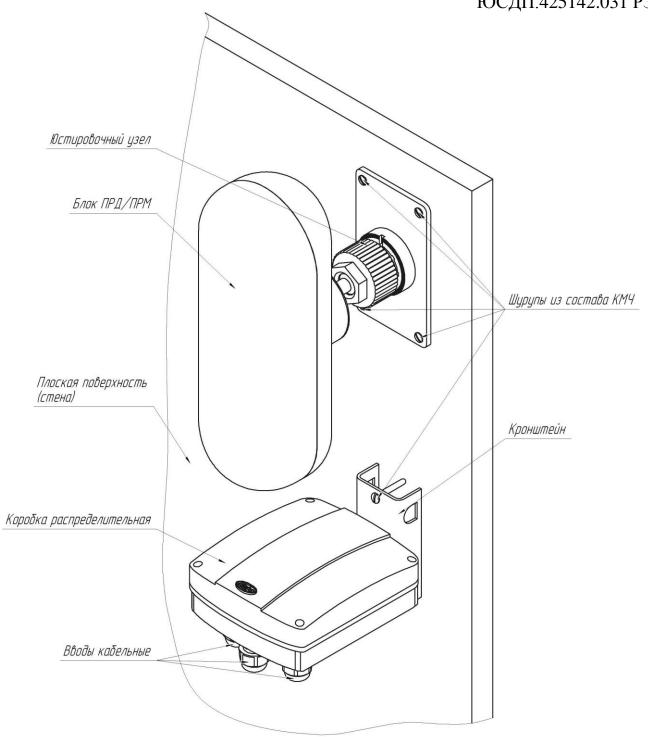


Рисунок 1.3 – Внешний вид блоков ПРМ /ПРД и КР на плоской поверхности (стене)

1.4.2.3 Для отображения состояния извещателя по интерфейсу RS-485 на стационарном пункте охраны используется ПК. Требования к ПК приведены в п. А1 приложения А.

Для настройки извещателя по интерфейсу RS-485 в полевых условиях на рубеже охраны используется ПН. В качестве ПН может быть использован любой мобильный ПК (ноутбук, нетбук и пр.) с операционной системой Windows XP (или выше) и установленным специализированным ПО. ПО на диске поставляются в комплекте извещателя. Руководство пользователя ПО приведено в приложении А. Дополнительные требования к ПН приведены в п. А1 приложения А.

Для сопряжения интерфейса RS-485 с интерфейсом USB ПН или ПК используется преобразователь интерфейса RS-485/USB любых фирмпроизводителей. Преобразователь обязательно должен поддерживать скорость 115200 бит/с.

По дополнительному заказу в комплектность извещателя может быть введен преобразователь интерфейса USB/RS-485 IFD6500 фирмы Delta с кабелем для подключения к ПН и ПК и программным драйвером.

Внимание! Извещатель не имеет внешних органов управления. Юстировка и настройка параметров извещателя может быть произведена только с помощью ПК или ПН по интерфейсу RS-485.

- 1.5 Маркировка
- 1.5.1 Маркировка ПРМ и ПРД извещателя содержит:
- товарный знак предприятия-изготовителя,
- наименование извещателя
- условное обозначение блоков (ПРД или ПРМ),
- заводской порядковый номер,
- месяц и год изготовления;
- единый знак обращения продукции на рынке государств членов
 Таможенного союза.
 - 1.5.2 Маркировка потребительской тары извещателя содержит:
 - наименование извещателя;
 - номер ТУ;
 - товарный знак предприятия-изготовителя;
 - заводской номер извещателя;
 - месяц и год упаковывания;

- единый знак обращения продукции на рынке государств членов Таможенного союза;
 - штамп ОТК.
 - 1.6 Упаковка
- 1.6.1 Блоки извещателя (ПРМ и ПРД), КР упакованы в коробки из гофрированного картона.
 - 1.6.2 КМЧ вкладывается в коробку с блоками извещателя.
- 1.6.3 Эксплуатационная документация на извещатель вкладывается в коробку с блоками извещателя.

2 Использование по назначению

- 2.1 Подготовка изделия к использованию
- 2.1.1 Меры безопасности при подготовке изделия

При выполнении работ по подготовке извещателя к использованию, а также при его использовании должны соблюдаться действующие правила техники безопасности при эксплуатации электроустановок напряжением до 1000 В.

Уровень излучения ПРД извещателя в соответствие с действующими нормами безопасности для лиц, профессионально не связанных с СВЧ, допускает проведение работ, предусмотренных настоящим руководством, круглосуточно (без ограничения времени).

2.1.2 Требования к месту монтажа извещателя

Внимание! Надежность работы извещателя зависит от выполнения следующих требований.

- 2.1.2.1 Общие требования к месту монтажа:
- не допускается сток воды с крыш в непосредственной близости от блоков извещателя (в направлении излучения - на расстоянии до 5 м, с боковых сторон – до 0,25 м);

- должна быть обеспечена зона отчуждения, в которой не допускается наличие кустов и веток деревьев, крупных неподвижных предметов и строительных сооружений. Не допускается движение транспорта, людей и животных. Ширина зоны отчуждения для разных вариантов применения указана ниже;
- границы автомобильных и железных дорог, крупных подвижных предметов и конструкций, лесных массивов должны располагаться вне зоны в два раза большей зоны отчуждения. В случае, если блоки извещателя или прилегающие конструкции подвержены вибрациям при проезде транспорта, указанное расстояние необходимо уточнить экспериментально.

Примечание - Не предъявляются требования к участку за пределами радионепрозрачных (металлических, железобетонных и т.п.) стен и ограждений.

При установке вблизи ЛЭП места установки блоков должны быть удалены от проводов на расстояние не менее 5 м при напряжении до 35 кВ и 10 м при напряжении до 500 кВ. Соединительные линии внешнего подключения при их расположении вблизи ЛЭП рекомендуется прокладывать подземным способом.

При последовательной установке нескольких извещателей для исключения преодоления 3О под или над местом установки блоков рекомендуется обеспечивать «перекрытие» смежных участков на расстояние не менее 3 м. При этом рядом должны располагаться одноименные блоки (ПРД и ПРД или ПРМ и ПРМ). Примеры установки в соответствии с рисунком 2.1.

Расстояние по горизонтали от оси 3О до границ зоны отчуждения должно составлять не менее 2,0 м для участка с максимальной длиной.

В зоне отчуждения максимальная высота неровностей земли, снежного и травяного покрова не должна превышать 0,5 м.

Примечание — Допускается эксплуатация извещателя при превышении снежным покровом указанной величины, при этом следует учитывать, что извещатель может не обнаруживать человека, движущегося в толще снежного покрова. В этом случае необходимо изменение высоты установки блоков.

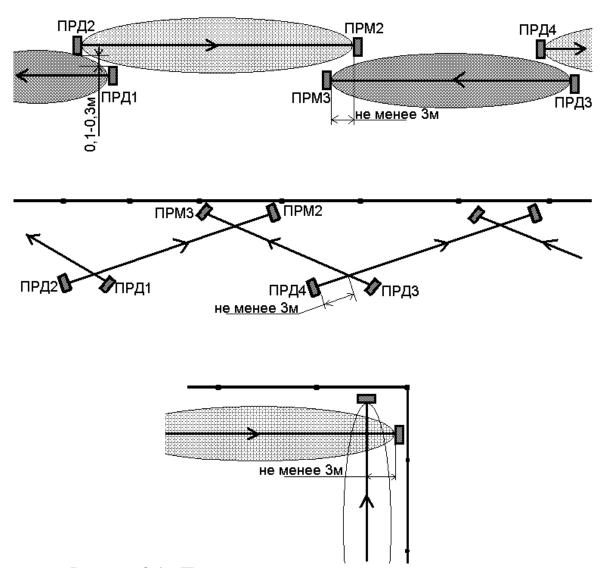


Рисунок 2.1 - Примеры установки на смежных участках

2.1.2.2 При невыполнении выше изложенных требований тактические характеристики извещателя могут ухудшаться. В таких случаях вопрос о допустимости применения извещателя в данных условиях определяется опытной эксплуатацией.

2.1.3 Монтаж извещателя

2.1.3.1 Общие рекомендации

Установка извещателя должна обеспечивать свободный доступ к органам управления и элементам крепления. Рекомендуется прокладка соединительных кабелей подземным способом.

2.1.3.2 Установка извещателя

В местах, где возможна высота снежного покрова более 0,5 м, длина надземной части столбов (опор) для крепления блоков извещателя должна быть

не менее 1,5 м. В малоснежных районах допускается уменьшать длину надземной части до 1,1 м.

Должна обеспечиваться возможность простого перемещения блоков извещателя по опоре при сезонных регулировках. Начальная высота установки блоков извещателя — 1,2 м от поверхности земли до центра блока. Кронштейн должен быть ориентирован на опоре таким образом, чтобы направления излучения блоков были ориентированы друг на друга.

В качестве опоры рекомендуется использовать металлическую трубу диаметром от 50 до 80 мм. При использовании асбестоцементной трубы необходима замена штатных хомутов. На мягких грунтах опора должна устанавливаться на фундаменте. Тип и размеры фундамента определяются с учетом типа грунта и климатических условий для данного района с тем, чтобы исключить нарушения юстировки в процессе последующей эксплуатации.

Крепление каждого из блоков извещателя на подборной круглой опоре производится при помощи двух хомутов, входящих в состав КМЧ. Крепление КР на опоре производится при помощи двух хомутов, входящих в состав КР. Крепление ПРМ (ПРД) и КР на опоре в соответствии с рисунком 1.2. Для установки блоков извещателя и КР на опоре необходимо:

- подготовить колодец для установки стойки;
- установить и закрепить стойку;
- установить и закрепить коробку;
- установить и закрепить ПРМ (ПРД).

Крепление каждого из блоков извещателя на плоской поверхности (стене) производится с помощью четырех шурупов, входящих в состав КМЧ. Крепление КР на плоской поверхности (стене) производится при помощи двух шурупов, входящих в состав КР. Крепление ПРМ (ПРД) и КР на плоской поверхности (стене) в соответствии с рисунком 1.3. Для установки блоков извещателя и КР на плоской поверхности (стене) необходимо:

- снять с кронштейна универсального шасси, отвернув 4 шурупа;

- просверлить в стене 4 отверстия диаметром 6 мм для блока извещателя и
 2 отверстия диаметром 6 мм для КР, в соответствии с расположением отверстий на кронштейне;
 - вставить в отверстия дюбели, входящие в состав КМЧ и КР;
 - установить и закрепить коробку при помощи шурупов из состава КР;
- установить и закрепить ПРМ (ПРД) при помощи шурупов из состава КМЧ.

2.1.3.3 Подключение

Для соединения цепей извещателя используется коробка распределительная (ЮСДП.468344.024). Внешний вид (со снятой крышкой) коробки с указанием основных составных частей в соответствии с рисунком 2.2

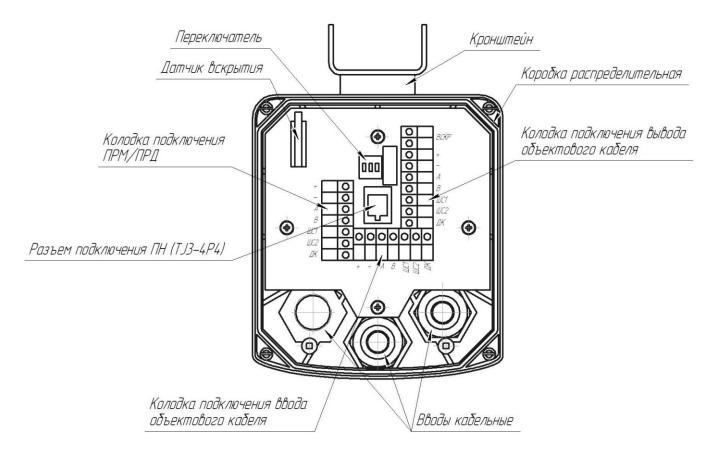


Рисунок 2.2 – Коробка распределительная. Внешний вид (со снятой крышкой)

Для подключения ПРМ (ПРД) к КР следует ввести кабель через отверстие в основании, зафиксировать кабель с помощью фитинга. Объектовый кабель вводится в КР через кабельный ввод.

Разделать конец объектового кабеля и подключить к клеммам КР. Подключение к КР ПРМ и ПРД внешних цепей производить в соответствии с таблицей 2.1.

Таблица 2.1 – Подключение к КР ПРМ/ПРД.

№ контакта	Маркировка вывода	Назначение вывода	
1	+	Плюс питания	
2		Минус питания	
3	A	RS-485	
4	В	K3-463	
5	ШС1	ШС (выходная цепь)	
6	ШС2		
7	ДК	+ Дистанционный контроль	

Подключение объектового кабеля к КР осуществляется через кабельные вводы.

Подключение к КР внешних цепей производить в соответствии с таблицей 2.2 и 2.3.

Таблица 2.2 – Подключение входящего объектового кабеля.

№ контакта	Маркировка вывода	Назначение вывода	
1	+	Плюс питания	
2		Минус питания	
3	A	- RS-485	
4	В		
5	ШС1	IIIC (namanag yang)	
6	IIIC2	ШС (выходная цепь)	
7	ДК	+ Дистанционный контроль	

Таблица 2.3 – Подключение выходящего объектового кабеля.

№ контакта	Маркировка вывода	Назначение вывода	
1	ВСКР	ШГ (тотуучу помен туус)	
2	ВСКР	- ШБ (датчик вскрытия)	
3		Минус питания	
4	+	Плюс питания	
5	В	RS-485	
6	A	K3-463	
7	ШС1	IIIC (privo and moni)	
8	ШС2	- ШС (выходная цепь)	
9	ДК	+ Дистанционный контроль	

2.1.3.4 Для дополнительных установок в КР предусмотрен ДИПпереключатель (RAB) имеющий три движковых переключателя. Переключатель «1» (R) обеспечивает параллельное включение в цепь RS-485 гасящего резистора с сопротивлением 120 Ом, установленного в КР. Резистор должен быть включен в КР блока извещателя имеющем самое дальнее расположение по линии RS-485 относительно пульта наблюдения. В КР остальных блоков резистор должен быть отключен.

Переключатели «2» (A) и «3» (B) обеспечивают отключение блока извещателя от общей линии RS-485 для обеспечения корректного использования ПН. Перед началом работы с ПН необходимо перевести переключатели в режим работы с ПН. По окончании работы с ПН переключатели должны быть установлены в режим работы общей линии RS-485.

Зависимость режимов от положения переключателей приведена в таблице 2.4 Таблица 2.4 — Зависимость режимов от положения переключателей

№ переключателя (обозначение)	Положение «ON»	Положение «OFF»	
1 (R)	Резистор включен в цепь	Резистор отключен	
2 (A)	Работа в общей наши (соти) ВС 485	Работа с ПН чрез разъем	
3 (B)	Работа в общей линии (сети) RS-485	«ПН»	

- 2.1.4 Настройка извещателя
- 2.1.4.1 Общие рекомендации

Настройка извещателя производится непосредственно на рубеже охраны после установки и подключения цепей извещателя.

Настройка извещателя производится с помощью ПН, подключаемого к разъему «ПН» в КР блока извещателя.

Инсталляцию и предварительные установки параметров ПО рекомендуется производить заблаговременно в комфортных условиях, пользуясь указаниями Приложения A.

- 2.1.4.2 Включить питание извещателя и проконтролировать его напряжение на соответствующих выводах блоков. Контроль напряжения может осуществляться любым измерительным прибором, обеспечивающим такое измерение. Измеренная величина с учетом необходимого эксплуатационного запаса должна составлять от 11,0 до 36 В.
- Подключить ПН к разъему «ПН» в КР блока ПРМ. Перевести переключатели «2» и «3» в КР в режим работы с ПН (см. таблицу 2.4). Осуществить вход в программу (см. Приложение А). Перейти на вкладку «Приемник». Нажать кнопку «Начать». Для юстировки извещателя ослабить гайки фиксации блоков ПРД и ПРМ. Визуально контролируя направление излучения блоков медленно и плавно поворачивать поочередно ПРД и ПРМ добиться максимального показания уровня сигнала. По окончанию юстировки фиксации блоков, затянуть гайки не допуская изменения положения (контролируя уровень принимаемого сигнала). Нажать кнопку «Закончить» на вкладке «Приемник».

Внимание! Минимальный уровень сигнала при максимальной дальности должен быть не менее 50 единиц.

Примечания

1 В некоторых случаях при недостаточном уровне принимаемого сигнала (в основном при длине участка близкой к максимальной) рекомендуется

последовательно изменить высоту установки ПРД и (или) ПРМ в пределах от 1 до 1,3 м с шагом 0,1 м с последующей юстировкой блоков (см. выше).

- 2 Следует учитывать, что в некоторых случаях при юстировке максимальный уровень принимаемого сигнала достигается при направлении блоков в сторону близлежащих отражающих поверхностей (ограждения, поверхность земли и т.д.). В таких случаях ориентирование блоков в данном направлении не допускается.
- 2.1.4.4 Одной из причин частых ложных срабатываний извещателя может быть влияние на ПРМ излучения ПРД соседних участков. Выявления такого влияния производится путем отключения питания соседних ПРД. При выявлении влияния необходимо изменить полосу частот извещателя. Изменение полосы частот производится одновременно в ПРМ и ПРД с помощью ПН.
- 2.1.4.5 Для осуществления контроля функционирования извещателя проконтролировать формирование извещений о тревоге. Для этого необходимо выполнить контрольные пересечения 3О по всей длине участка, выбирая места проходов во впадинах, на возвышениях. В случае отсутствия извещения при пересечении 3О необходимо скорректировать уровень порога по методике приведенной ниже.

Примечание — При установке изделия, исключающей возможность пересечения участка оператором указанными способами, пересечения участка выполнять способами и в группировке наиболее вероятными для проникновения нарушителя в охраняемую зону (по усмотрению службы эксплуатации). В этих случаях допускается использовать имитатор нарушителя в виде квадрата из материала, экранирующего СВЧ излучение с размерами 0,6 х 0,6 м, перемещая его в плоскости, перпендикулярной к оси 3О.

ВНИМАНИЕ! Для повышения помехоустойчивости извещателя необходимо устанавливать возможно большее абсолютное значение порога срабатывания.

2.1.4.6 По осциллограмме на экране ПН проконтролировать сигнал. Если наблюдаются шумы, носящие случайный непериодический характер, которые

могут быть вызваны движением предметов, растительности, качающейся на ветру, необходимо устранить влияние предметов на работу извещателя.

Вероятной причиной шумов, носящих систематический периодический характер, может быть влияние на ПРМ излучения ПРД соседних участков. Выявления такого влияния производится путем отключения питания соседних ПРД. Также отключение излучения ПРД может быть произведено с ПН или ПК через программу настройки путем снятия блока с охраны (приложение A, п A.4).

- 2.1.4.7 Установка порога обнаружения заключается в определении его значения, которое преодолевается при каждом контрольном пересечении оператором участка. Все контрольные пересечения выполнять с интервалами не менее 20 с со скоростью от 0,5 до 3 м/с по нормали к оси 3О, удаляясь от нее на расстояние не менее 4 м. Масса оператора, выполняющего пересечения, должна быть (50 80) кг, высота в группировке "согнувшись" от 0,8 до 1 м. При этом обязательно выполнение пересечений в следующих местах:
 - по середине участка в обоих положениях;
 - на расстоянии от 15 до 20 м от ПРД и ПРМ в обоих положениях;
 - во впадинах в положении «согнувшись».
- 2.1.4.8 После выполнения регулирования извещателя установить переключатели «2» «3» в режим работы с общей сетью RS-485, установить на место крышку КР. Произвести ДК (в случае использования этой функции), подав на вывод «ДК» (ПРД) напряжение (10-30) В, при этом извещатель должен В выдать извещение тревоге. процессе эксплуатации извещателя рекомендуется проводить ДК не менее одного раза в сутки.
- 2.1.4.9 Провести апробирование работы извещателя путем пробной круглосуточной эксплуатации извещателя в течение периода не менее 3 суток с регистрацией всех извещений и последующим их анализом. При этом не реже двух раз в сутки производить проверку работоспособности извещателя путем контрольных пересечений 3O.

2.1.4.10 При выявлении ложных извещений при прогоне или пропусков при контрольных пересечениях необходимо устранить нарушения, пользуясь указаниями подраздела 2.2.2.

2.1.5 Требования к организации сети RS-485

2.1.5.1 Для настройки параметров и отображения состояния извещателя на ПК используется интерфейс RS-485. Контактами интерфейса являются выводы «А» и «В» в кабеле извещателя.

Один или более извещателей, установленных на рубеже охраны, могут быть объединены в общую сеть по интерфейсу RS-485, а информация о них выведена на ПК, установленный в пункте наблюдения. Изменение параметров обнаружения, а также постановка и снятие извещателей с охраны могут быть произведены с ПК.

- 2.1.5.2 Для сопряжения интерфейса RS-485 с интерфейсом USB ПК преобразователь интерфейса USB/RS-485 любых используется фирмпроизводителей. Преобразователь обязательно должен поддерживать скорость 115200 бит/с. Преобразователь подключается к свободному USB разъему ПК. Для работы преобразователя необходимо установить программный драйвер на ПК. Драйвер соединительный кабель. как правило, поставляется предприятием-изготовителем преобразователя в комплекте с самим устройством.
- 2.1.5.3 На ПК должно быть установлено специализированное ПО для настройки и отображения состояния извещателей. ПО поставляется на диске в комплекте извещателя. Руководство по установке и использованию ПО приведено в Приложении А.
- 2.1.5.4 Для организации сети по интерфейсу RS-485 рекомендуется использовать кабели типа UTP, FTP пятой категории.
- 2.1.5.5 Для корректной работы сети между контактами «А» и «В» должны быть установлены два гасящих резистора номиналом 120 Ом. Один резистор устанавливается в месте коммутации кабеля из комплекта преобразователя с основной линией. Рекомендуется проводить эту коммутацию в КР с колодкой

клеммной. Второй резистор устанавливается в КР самого удаленного по сети извещателя.

В конструкции некоторых преобразователей уже предусмотрен резистор, который может быть включен в сеть посредством переключателя или перемычки. Наличие резистора необходимо уточнять в документации, поставляемой в комплекте преобразователя.

2.1.5.6 Каждому блоку извещателя в сети должен быть присвоен свой индивидуальный сетевой адрес в диапазоне от 2 до 255. Изменение сетевого адреса и обращение к извещателю с определенным адресом описано в Приложении А.

При распределении между блоками сетевых адресов, необходимо первый адрес оставлять свободным для исключения конфликтов блоков, т.к. при выполнении сброса настроек блока к заводским ему автоматически присваивается адрес 1.

2.1.5.7 Пример организации сети из N извещателей в соответствии с рисунком 2.3.

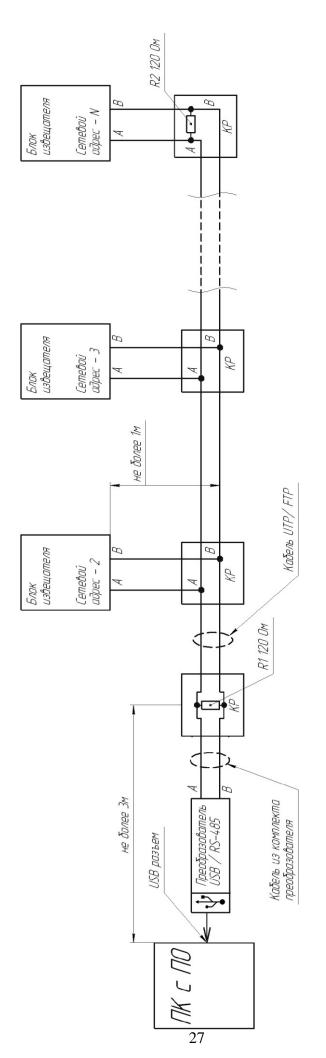


Рисунок 2.3 – Пример организации сети RS-485

- 2.2 Использование изделия
- 2.2.1 Тактика и правила использования извещателя устанавливаются инструкциями службы эксплуатации.
 - 2.2.2 Перечень возможных неисправностей и способы их устранения
- 2.2.2.1 Основные неисправности и способы их поиска и устранения приведены в таблице 2.5.

Таблица 2.5 – Основные неисправности и способы их поиска и устранения

Внешнее проявление	Возможные причины неисправности	Способы и последовательность определения, устранения неисправности
1 Извещатель постоянно выдает извещение по цепи «ШС».	На ПРМ не подается напряжение питания (напряжение ниже нормы).	Проконтролировать напряжение питания ПРМ. При отсутствии напряжения или заниженном напряжении проверить цепи питания и БП.
	Нарушена цепь «ШС»	Проверить целостность цепи ШС путем "прозвонки".
	Несоответствие условий эксплуатации требованиям РЭ.	Визуально оценить правильность установки и условия эксплуатации
	Частотный канал ПРМ не соответствует каналу ПРД	Установить с помощью ПН одинаковый частотный канал блоков.
	ПРМ неисправен.	Заменить ПРМ.
	ПРД неисправен	Заменить ПРД
2 Извещатель постоянно выдает извещение по цепи «ШС», в окне «Состояние» ПРМ программы настройки отображается «Выс. уров.» или «Низкий уров.»	Не произведена фиксация текущего уровня сигнала при юстировке	Пользуясь указаниями п. А.6 приложения А и п.2.1.4.3 правильно выполнить процедуру юстировки.
3 Извещатель постоянно выдает извещение по цепи	Нарушена цепь «ВСКР»	Проверить целостность цепи «ВСКР» путем "прозвонки".
«BCKP».	Неправильная установка крышки KP.	Проконтролировать правильность установки крышек.

Продолжение таблицы 2.5

Внешнее проявление	Возможные	Способы и последовательность определения
	причины	и устранения неисправности
	неисправности	
4 ПН или ПК «не	Нарушена цепь	Проверить целостность цепи RS-485
видит» извещатель	RS-485	
	Неправильные	Устранить пользуясь указаниями
	настройки адреса,	приложения А
	Сот-порта.	
5 Частые ложные	Несоответствие	Оценить правильность установки и
извещения	установки или	соответствие условий эксплуатации
	условий	требованиям настоящего руководства
	эксплуатации	
	требованиям РЭ.	
	Воздействие на	Изменить полосу частот соседнего
	ПРМ излучения	извещателя
	ПРД соседнего	
	участка.	
	Неисправность	Отключить цепь «ДК» от извещателя и
	цепи «ДК».	провести контрольную эксплуатацию без
		использования режима «ДК».
	Повышенный	Проверить надежность контактных
	уровень пульсаций	соединений цепей питания.
	питания.	Заменить БП на заведомо исправный.
	Неисправность	Закоротить перемычкой выход ПРМ и
	цепей «ШС».	провести контрольную эксплуатацию. При
		этом извещения, регистрируемые оконечным
		устройством, являются признаком
		неисправности «ШС»или самого устройства.
	ПРМ или ПРД не	Заменить извещатель (неисправный блок).
	исправен.	, -

Примечание - Неисправность блоков извещателя выявляется их заменой на заведомо исправные с последующей контрольной эксплуатацией.

3 Техническое обслуживание

- 3.1 Техническое обслуживание включает в себя:
- проверку состояния участка в зоне отчуждения;
- внешний осмотр извещателя;
- проверку выдачи извещения.

Техническое обслуживание рекомендуется проводить ежемесячно. После природных стихийных воздействий (сильных снегопадов, ураганов, ливней и т.п.), а также в случае интенсивного роста растительности рекомендуется внеплановое проведение проверки состояния участка.

- 3.2 Рекомендуется также проведение проверки функционирования извещателя в соответствии с указаниями подраздела 2.1.4.5 не реже двух раз в год (в периоды сезонных изменений окружающей обстановки) и при выявлении нарушений функционирования.
- 3.3 Внешним осмотром участка определить его соответствие требованиям подраздела 2.1.2. При необходимости обрубить ветви деревьев и кустарников, скосить траву с учетом возможной величины роста в период до проведения следующего регламента и очистить участок от посторонних предметов. В зимнее время при необходимости изменить высоту установки блоков или очистить участок от снежных заносов.

Проверить крепление блоков извещателя. В случае загрязнения очистить поверхности блоков.

Выполнить контрольные проходы в 3О и убедиться в работоспособности извещателя, проконтролировав прохождение извещения на прибор приемно-контрольный.

Примечание – Проверка электрических соединений должна выполняться в рамках общих регламентных работ системы охранной сигнализации.

4 Транспортирование и хранение

- 4.1 Извещатель может транспортироваться автомобильным, железнодорожным, речным и воздушным транспортом, общие требования к транспортированию должны соответствовать ГОСТ 15150-69.
- 4.2 Условия транспортирования извещателя должны соответствовать условиям хранения 6 по ГОСТ 15150-69.

Условия транспортирования извещателя в части механических воздействий должны соответствовать условиям Ж по ГОСТ Р 51908-2002.

При транспортировке должны строго выполняться требования манипуляционных знаков на упаковке.

4.3 Хранение извещателя в упаковке для транспортирования должно соответствовать условиям 5 по ГОСТ 15150-69.

В помещении для хранения не должно быть токопроводящей пыли, паров кислот и щелочей, а также газов, вызывающих коррозию и разрушающих изоляцию.

При складировании и хранении должны строго выполняться требования манипуляционных знаков на упаковке.

Извещатели в транспортной таре должны храниться не более трех месяцев, при этом транспортная тара должна быть без подтеков и загрязнений. При хранении более трех месяцев извещатели должны быть освобождены от транспортной тары..

Приложение A (справочное)

Инструкция пользователя ПО

Панель управления «RR2» (далее по тексту — ПУ), предназначена для сопряжения извещателей охранных линейных радиоволновых «ТАРБАТ-200-01», «ТАРБАТ-200A-01», «ТАРБАТ-200A-02», «ТАРБАТ-200A-02» (далее по тексту - извещатель) с персональным компьютером (ПК) или прибором настройки (ПН).

А.1 Основные положения

ПУ может быть запущено на машинах с установленной операционной системой Microsoft Windows XP и выше. В системе должен присутствовать как минимум один СОМ-порт. Разрешение экрана должно быть не менее 800х600. Минимальный объем свободного дискового пространства необходимого для запуска программы составляет 10 Мb.

Для работы с ПУ необходимо подключиться к розетке телефонной, либо клеммам «А», «В» коробки распределительной блока ПРД/ПРМ и через преобразователь интерфейса RSX4-2.1 (USB/RS-485) к USB порту ПК. Преобразователь должен поддерживать скорость работы 115200 кб/с.

Диск с ПО, поставляемый в комплекте с извещателем, содержит файл установки ПУ «RR2 Setup». Для установки программы запустить файл «RR2 Setup», следуя указаниям на экране произвести установку. Установка ПУ выполняется аналогично любым другим приложениям для Windows.

А.2 Предварительные настройки

При первичном запуске программы появляется окно настроек – «Wizard» («Мастер настройки») (Рисунок А.1) В этом окне необходимо произвести предварительные программные настройки.

Для настройки необходимо, следуя указаниям на экране, выполнить пять последовательных шагов:

— «Приветствие» (Рисунок А.1). В этом окне необходимо произвести выбор языка. По умолчанию стоит английский язык. Для смены языка необходимо из выпадающего списка «Language» выбрать язык и нажать

«Change language».

Для перехода к следующему шагу настроек нажать кнопку «Далее».

- «Поддерживаемые функции». В окне необходимо отметить функцию «2-х позиционный радар», либо убедиться что функция отмечена (отметка стоит по умолчанию).
- «Пароли». Необходимо задать пароли для Пользователя и Администратора, либо оставить поля незаполненными для осуществления беспарольного входа в программу.
- «Выбранные настройки». В окне выводятся все ранее установленные параметры. Если все настройки установлены правильно нажать кнопку «Готово», для возврата и изменения параметров кнопку «Назад».
- «Финиш». Программа применяет выбранные параметры. По окончании процесса нажать «Выход».

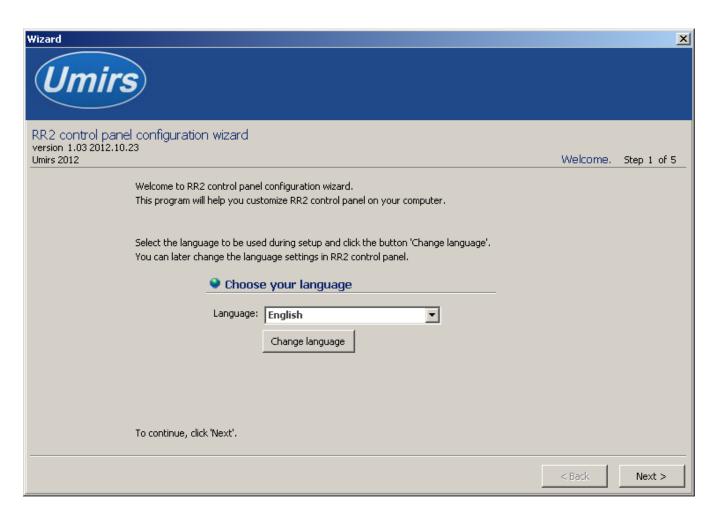


Рисунок A.1 – Окно настроек «Wizard»

А.З Запуск ПУ

После выполнения предварительных настроек, а также при всех дальнейших запусках программы появляется окно «Вход в программу» (рисунок А.2).

В необходимо этом окне выбрать ЛОГИН (Администратор или Пользователь), ввести соответствующий пароль доступа и нажать клавишу Enter, либо щелкнуть мышью на кнопке «ОК». В случае, если в предварительных настройках установлен беспарольный вход, поле «Пароль» оставить незаполненным.

ВАЖНО! При первом запуске ПУ необходимо войти в программу с правами Администратора и установить соединение с блоками ПРМ и ПРД. Только после этого можно пользоваться ПУ с правами Пользователя.

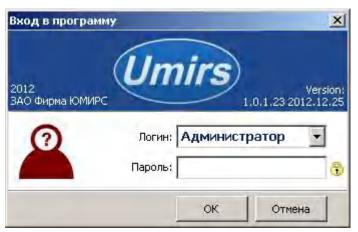


Рисунок А.2 – Окно «Вход в программу»

А.4 Вкладка «Настройки», назначение ее отдельных полей и вкладок

После входа в программу появляется окно «Панель управления «RR2» (Рисунок А.3) В этом окне необходимо произвести предварительные программные настройки извещателя.

Для начала работы необходимо нажать кнопку «Запуск» при условии, что остальные установки (сот-порт, скорость, сетевой адрес) правильно выбраны. Программа имеет панель статуса, на которой отображается служебная информация (слева направо, см. рисунок А.3):

текущий СОМ-порт и скорость работы;

- номера передаваемых кадров (по модулю 255);
- номера принимаемых кадров (по модулю 255);
- количество байт в приемном буфере COM-порта;
- количество кадров в передающем буфере программы;
- индикация работы программных таймеров.

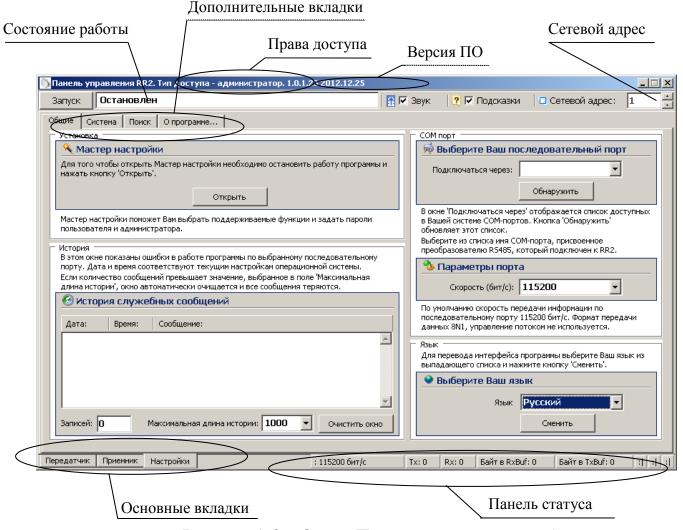


Рисунок A.3 – Окно «Панель управления «RR2»

Внизу слева находятся основные вкладки программы:

- «Передатчик»;
- «Приемник»;
- «Настройки».

Вверху слева расположены дополнительные вкладки программы:

- «Общие»;
- «Система»;
- «Поиск»;

«О программе».

В поле «Выберите Ваш язык» можно изменить язык программы.

Поле «Мастер настройки» позволяет перейти на шаг А.2 для изменения предварительных установок программы.

Внимание! Переход к шагу А.2 «Мастер настройки» приводит к сбросу всех настроек программы (адрес, скорость пороги и др.).

Дополнительная вкладка «Система» отображает служебные параметры в разделе «Состояние».

Кнопка «Сброс» производит сброс всех параметров извещателя к заводским.

Раздел «Сеть» предназначен для настройки сетевого адреса блоков и скорости передачи данных по сети. Каждому блоку присваивается свой индивидуальный сетевой адрес. Для изменения сетевого адреса нужно во вкладке «Настройки» /«Система» / раздел «Сетевые настройки» щелкнуть по полю «Изменить», выбрать в поле «Сетевой адрес» необходимый адрес (от 1 до 254) и щелкнуть по кнопке «Применить» (Рисунок А.4). Выбранный адрес записывается в энергонезависимую память блока. Для взаимодействия с блоком необходимо в поле «Сетевой адрес», которое находится в верхнем правом углу любой вкладки указать адрес, присвоенный данному блоку. По умолчанию блок ПРМ извещателя имеет сетевой адрес 2, блок ПРД – 1.

Поле «Активность» позволяет снимать извещатель с охраны или активизировать его. Метка в поле означает, что извещатель активен, т.е. взят под охрану. Снятие с охраны блока ПРД приведет к тому что он перестанет излучать сигнал. Снятие с охраны ПРМ приведет к тому, что он перестанет формировать тревожные сообщения.

ЮСДП.425142.031 РЭ

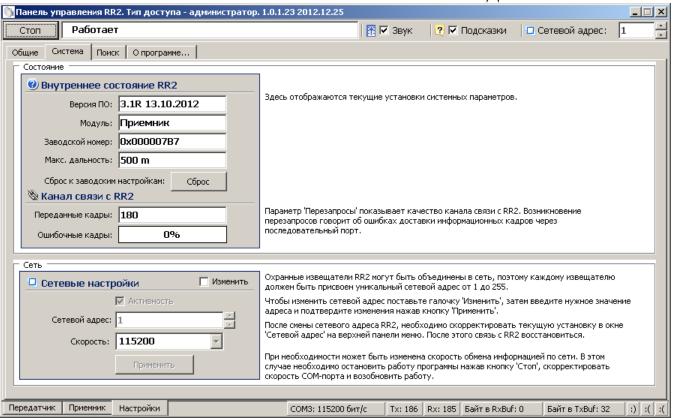


Рисунок А.4 – Окно вкладки «Настройки»/«Система»

Дополнительная вкладка «Поиск» позволяет обнаружить подключенные извещатели, если предварительно не известен сетевой адрес присвоенный блоку.

Дополнительная вкладка «О программе» содержит информацию о версии программы и предприятии-изготовителе.

А.5 Запуск СОМ-порта

Для настройки параметров последовательного порта необходимо открыть вкладку «Настройки» / «Общие» (рисунок А.5).

ЮСДП.425142.031 РЭ

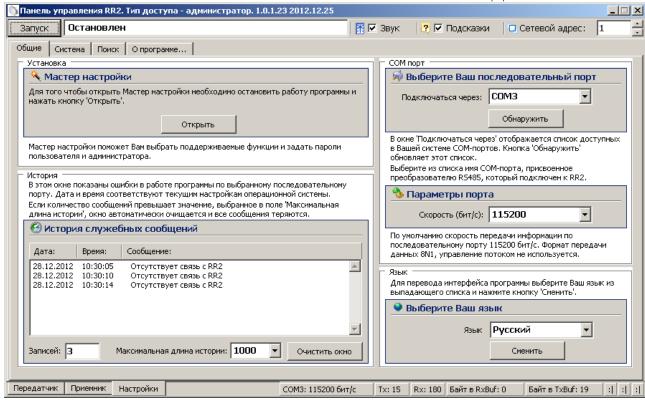


Рисунок А.5 – Окно вкладки «Настройки»/«Общие»

На панели «СОМ порт» Нажать кнопку «Обнаружить», что позволяет определить имеющиеся на компьютере последовательные порты. В поле «Подключаться через» выбрать порт, через который произведено подключение извещателя.

Панель «Параметры порта» содержит настройки формата последовательной передачи данных. По умолчанию в программе и в извещателях установлена скорость 115200 бит/с.

Для того чтобы открыть выбранный СОМ-порт, необходимо нажать кнопку «Запуск». Если параметры «Сетевой адрес», «СОМ-порт» и «Скорость» выбраны правильно, на панели статуса должны обновляться поля «Номер передаваемого кадра» («Тх») и «Номер принимаемого кадра» («Rx»), а в поле «Состояние работы» должно отобразиться состояние «Работает». Если этого не происходит, необходимо проверить соединение компьютер-конвертеризвещатель и проконтролировать правильность установки параметров в программе.

А.6 Вкладка «Приемник»

Вкладка «Приемник» (Рисунок А.6) служит для настройки параметров обнаружения блока ПРМ извещателя, а также для отображения его состояния в режиме реального времени. В левой верхней части окна находятся область настроек, в правой и нижней – область отображения состояния.

Для изменения параметров ПРМ необходимо в области настроек нажать кнопку «Начать», отметить поле «Изменить параметр», установить в полях параметров необходимые значения, нажать кнопку «Применить», затем кнопку «Закончить». Кнопка «Сброс» служит для возврата параметров к установленным по умолчанию.

Кнопка «Начать» также служит для юстировки блоков извещателя. Необходимо нажать кнопку «Начать», затем выполнить юстировку блоков, добиваясь максимального значения уровня сигнала. Нажатие кнопки «Закончить» сохраняет значение сигнала в памяти ПРМ. Сохраненное значение является точкой отсчета для определения изменения уровня сигнала в результате разъюстировки или засветки.

Поле «Интерфейс ЧД» не используется. Для корректной работы извещателя значения поля должно быть «откл.».

В поле «Состояние» отображается текущее состояние блока ПРМ.

Поле «Состояние» может принимать следующие значения / цвет:

- «Норма» / зеленый блок ПРМ исправен и находится в дежурном режиме;
- «Тревога» / красный тревожное сообщение, нарушитель пересекает
 30;
- «Поиск»/«Нет сигнала» / красный блок ПРМ выполняет поиск сигнала от блока ПРД. Сигнал от ПРД слишком низкий.
- «Высокий уров.» / красный принимаемый сигнал превышает фиксированный уровень более чем в 4 раза (засветка);

- «Низкий уров.» / красный принимаемый сигнал ниже фиксированного уровня более чем в 4 раза (разъюстировка, изменение условий 3O);
- «Уд. контроль» / красный проводится дистанционный контроль блока;
- «Нет радара» / красный неисправность (нет контакта или неисправен антенный модуль внутри блока);
 - «Снят с охр.» / серый блок ПРМ снят с охраны.

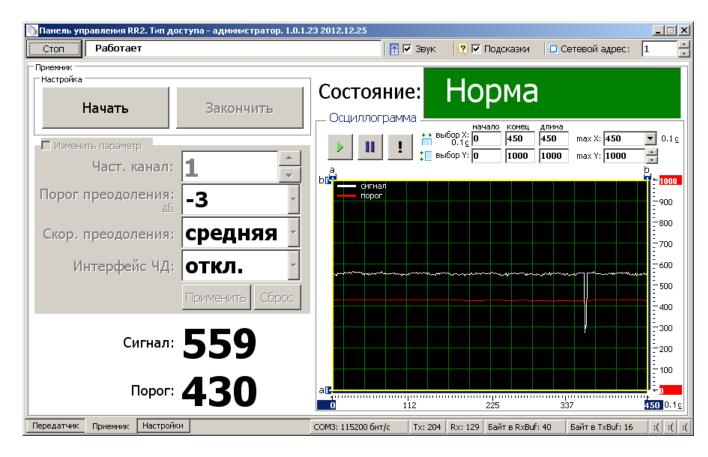


Рисунок А.6 – Окно вкладки «Приемник»

В нижней части окна отображается текущее значение уровня сигнала и порога обнаружения.

В правой нижней части окна расположена осциллограмма сигнала и порога в реальном времени. Кнопка — фиксирует график сигнала. Кнопка — возобновляет отображение сигнала в реальном времени. Кнопка — прячет маркеры «а» и «b» по осям. Изменяемые поля «max Y, мкВ» и «max X, 01 с» предназначены для изменения масштаба отображения сигнала.

Поля «начало», «конец» и «длина» изменяются автоматически при перемещении маркеров «а» и «b» и отображают координаты маркеров и расстояние между ними.

А.7 Вкладка «Передатчик»

Вкладка «Передатчик» (Рисунок А.7) служит для настройки параметров работы блока ПРД извещателя, а также для отображения его состояния в режиме реального времени.

В левой части окна находятся область настроек, в правой – область отображения состояния.

В области настроек ПРД находится один параметр — частотный канал. Для изменения частотного канала необходимо отметить поле «Изменить параметр», установить в поле «Част. канал» необходимое значение и нажать кнопку «Применить». Блоки ПРД и ПРМ одного извещателя должны иметь одинаковое значение частотного канала.

Для возврата параметра к установленному по умолчанию необходимо нажать кнопку «Сброс», затем «Применить».

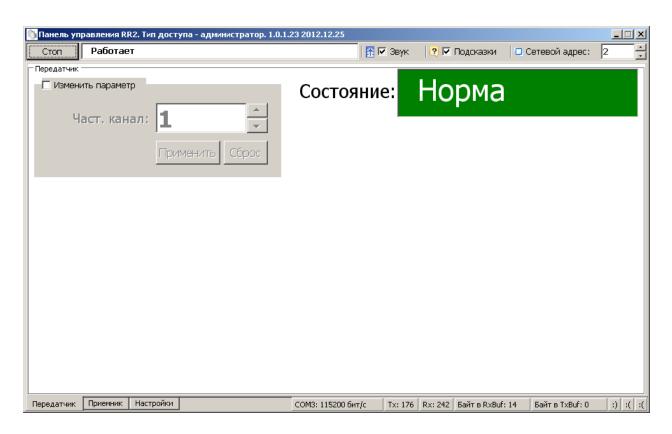


Рисунок А.7 – Окно вкладки «Передатчик»

В поле «Состояние» отображается текущее состояние блока ПРД.

Поле может принимать следующие значения / цвет:

- «Норма»/зеленый блок ПРД исправен;
- «Нет радара»/красный неисправность (нет контакта или неисправен антенный модуль внутри блока);
- «Уд. контроль»/красный проводится дистанционный контроль блока;
 - «Снят с охр.»/серый блок ПРД снят с охраны.

Приложение Б (справочное)

Инструкция по обновлению микропрограммы извещателя

Б.1 Обшие сведения

Микропрограмма («прошивка»)— системное программное обеспечение, встроенное («зашитое») в микропроцессор извещателя, и хранящееся в его энергонезависимой памяти.

С целью внесения дополнительных функций, изменения алгоритмов работы, а также каких-либо других усовершенствований извещателя предприятие-изготовитель может вносить изменения в микропрограмму извещателя.

Файлы актуальной версии микропрограммы выкладываются на сайт предприятия-изготовителя <u>www.umirs.ru</u>

Микропрограмма извещателя включает в себя 2 файла *.BIN - файл микропрограммы блока ПРД и файл микропрограммы блока ПРМ.

Для перепрограммирования извещателя в состав поставляемого ПО входит программа «RR2 flash».

Б.2 Установка программы

Для установки программы «RR2 flash» на ПК необходимо запустить файл установки «RR2 flash Setup». Следуя указаниям на экране произвести установку. Установка программы выполняется аналогично любым другим приложениям для Windows.

Б.3 Основные функции и возможности программы

Программа «RR2 flash» позволяет запрограммировать микропрограмму в блок извещателя в двух основных режимах:

- режим «Одиночное программирование»;
- режим «Сетевое программирование».

Режим «Одиночное программирование» позволяет произвести программирование блока извещателя не подключенного к общей сети

извещателей RS-485. Такой режим может быть применен перед установкой извещателя на объект в лабораторных условиях с помощью ПК. Также возможно перепрограммирование блоков в режиме «Одиночное программирование» с помощью ПН непосредственно на рубеже охраны.

Режим «Сетевое программирования » позволяет производить удаленное перепрограммирование блоков извещателя, подключенных к общей сети RS-485 с помощью ПК на пункте наблюдения, на который выведена эта сеть.

При запуске программы на экране появляется основное окно программы «Прошивка».

В меню «Язык (Language)» стандартного меню возможно выбрать один из языков интерфейса программы.

Б.4 Программирование в режиме «Одиночное программирование»

Программирование блока в режиме «Одиночное программирование» производить в следующей последовательности:

- подключить блок извещателя через преобразователь интерфейса RS-485/USB к разъему USB ПК или ПН;
- подключить к выводам блока «+», «-» источник постоянного тога с напряжением от 9 до 36 В. Один из проводов рекомендуется подключать через тумблер. Замкнуть тумблер;
 - запустить программу «RR2 flash», если она не запущена;
- активировать поле «Загрузить файл прошивки», установив в поле галочку;
 - нажать на кнопку и указать путь к файлу прошивки блока;
 - перейти на вкладку «RS232»;
 - нажать кнопку «Обнаружить»;
- из списка «Имя порта» выбрать порт, к которому подключен блок извещателя;
- выбрать значение скорости в поле «Скорость» 460800 бит/с
 (максимальная скорость ограничивается поддерживаемыми скоростями преобразователя интерфейса);

- нажать кнопку «Старт»;
- в окне журнала должно отобразиться сообщение «Открытие порта СОМ_ на скорости 460800 бит/с...ОК, Открытие файла прошивки...ОК, Ожидание ответа загрузчика»;
 - разомкнуть тумблер питания на время не менее 1 с и замкнуть вновь.
 - происходит загрузка микропрограммы;
- при корректной загрузке в журнале должно отобразиться сообщение «Загрузка успешно завершена.., Выход из загрузчика, Запуск прошивки.., Ожидание ответа загрузчика»;
 - нажать кнопку «Стоп»;
 - отключить питание блока;
 - отключить блок от преобразователя интерфейса.

Б.5 Программирование в режиме «Сетевое программирование»

Программирование блока в режиме «Сетевое программирование» производить в следующей последовательности:

- остановить работу программы, отображающей состояние извещателей на стационарном ПК, к которому выведена общая сеть RS-485;
 - запустить программу «RR2 flash»;
- активировать поле Загрузить файл прошивки», установив в поле галочку;
 - нажать на кнопку и указать путь к файлу прошивки блока;
 - перейти на вкладку «RS232»;
 - нажать кнопку «Обнаружить»;
- из списка «Имя порта» выбрать порт, к которому подключена сеть RS 485;
- выбрать значение скорости в поле «Скорость» 115200 бит/с (скорость на которой работает сеть RS-485, т.е. то значение, которое установлено в настройках всех блоков);
 - перейти на вкладку «RS485»;

- активировать поле «Сетевое программирование», установив в поле галочку;
 - в поле «Адрес» установить значение адреса программируемого блока;
 - нажать кнопку «Старт»;
 - происходит загрузка микропрограммы;
- при корректной загрузке в журнале должно отобразиться сообщение «Загрузка успешно завершена, Выход из загрузчика, Запуск прошивки, Сетевое программирование выполнено, Нажмите стоп»
 - нажать кнопку «Стоп»;
- для программирования следующего блока того же типа (ПРД или ПРМ) изменить значение адреса в поле «Адрес» и нажать кнопку «Старт»;
- по окончании программирования всех одноименных блоков указать путь к файлу для блока другого типа и повторить действия предыдущего шага;
 - по окончании программирования закрыть программу.

Лист регистрации изменений

Изм.	Номера листов (страниц)				Всего		Входящий номер		
	ИЗМС- НСННЫХ	заме- ненных	НОВЫХ	аннулиро- ванных	листов (страниц) в докум.	Номер докум.	сопроводитель-	Под- пись	Дата